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= Social scientists frequently attempt to study causal effects with geolocated data Estimands: 7 = ElY' Y7 T = EY'-Y'W =1], 7(x) [ 7 & , Bridge functions: 3A(.) that_satlsﬂesf
. : : : N : : oL E[Yl—YO|X:X} E[Y(?U)—h(V,S,QU)lU,S,W—w]—O Oer{O,l}
Especially widespread in economic history, historical political economy = his a transformation of the pre-treatment outcome so that the effect of the
= Assignment mechanism unknown, but loose intuition that closer units are more Conditional-variance weighted average of strata-specific effects FERERY unmeasured confounder on the transformation is the same as on the
comparable on unobservables — Tobler’s law S unobserved counterfactual outcome
= Current practice: assume geolocations are just another covariate, proceed with standard = Then. counterfactual mean E [V —FEIh(V.w.S
unconfoundedness approaches S E[{e(S)(1—e(S)}7(S)] o | (w)] Vo w, S)
= Or use spatial information to subset the data to ‘close enough to a border’, then fit outcome ‘ Ee(S)(1 — e(S)] \ " h(-) identified by moment condition
models : ‘local’ unconfoundedness K E[Y — h(V,w,S;v)|Z,W,S] =0
= this project: estimators that use geographic data to partial out effect of smooth s )
spatial confounder using ideas from semiparametric estimation for causal effects Estimators VV N Y = where ~ is a finite-dimensional vector that characterises h(-)
= High-dimensional Generalised Method of Moments problem - need
Partially Linear Regression Coefficient is consistent for ATO to handle non-uniqueness using regularisation (Imbens et al 2021)
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Data: = Each observation has spatial location s; T=> (Y, —m(S)) (Wi —e(S) /> (W; —&(S)))
= Qutcome: Y;(s) € R it data: 2. Latitude. lonsitud — —
« Treatment: Wi(s) € {0, 1} = point data: s; € R“: latitude, opgltu e | 1= 1= « Dat 10 % 40 cell srid
- (Unobserved) Confounder: Ui(s) € R = areal data: Data located on an irregular lattice ata on 4l x aU cell gri
Y Augmented Inverse Propensity Weighting for ATE = U is a Gaussian Process with Matern covariance (stationary)
Robinson: Partial Linear Regression Formulation Regression v orestduals R(d:6,v) = ( )12 1 (2\/9%) K, (2\g;d)
N I | =2 DiY;—m(S; 1o [ . 1 — Dy)(Y; — mo(S; V)2
% (LT TAAITPEW _ _Z m.(S) + il a mi(S;)) B _Z Ao(S;) + ( i)( / my(S;))
L s . i h d “long’ nis infeasible. b Labl LN e(Si) J e 1 —é(8S;) | = K is a modified Bessel Fn
Since U Is uno SerVTe , _Pngr regression Is inteasible, but 5; available estimator for E[Y.(L1) estimator for E[Y,(0) = v >0 is asmoothness parameter, ¢ is a range parameter
" OVB:E[r —7] = (X'X) X'E[U[X] - - = d is Euclidian distance between two locations
= To adjust for S; flexibly, a partially linear model is a reasonable starting point Tobler : Estimating 7, ¢ = W; ~ Bernoulli(logit(U + n,))), n; normal
Yi=7W, + S;) + & : : : _ Y, =7W, i
. | | ! Af(())( ) +e | = Weighted sum representation regressions m(s) = E [Y|s = s] as m(s) = >, wi(s;)y: Yi=1Wit+Ute
= In a seminal artlcle, ROblnSOH(1988) rewrites the above regression as = NN Regression, Kernel Regression, Random Forests 6 05
Y —EY;|Si]) =7- (W, —E[W;|Si]) +m: ;E|[n,S;, W] =0 * Nearest Neighbours Differencing. Compute A; = WA; is the average of
. . neighbours’values of A;, where W is a (queen) weight matrix ,
= where E [Y;|S;] = m(S;) and E [W;|S;] =: e(S;) are nonparametric regressions - Estimate regression with residuals - ‘ .
[‘nuisance’ components] 0 by smoothness . —
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Identification = With regular lattice data, Druckenmiller and Hsiang(2018) call this Spatial First differences = = %
= Markov Random Fields: Unit random effects ~, are assumed to be GMRF and \V; %
1. Consistency / SUTVA Y, = Y;(w;). denotes the set of neighbours of unit ;. 2.0 . = 2.0
2. Latent Unconfoundedness: Y;(w) 1L W |U given unobserved confounder i : %
3. Positivity : Pr (W = 1|U) € (0, 1) T =2 > (i—w L L
= Treatment varies at a smaller scale than the spatial confounder j=1 i€Nj > o 5 2 w % 8 & B o 5 28 w 3 8 & 3
4. Learnability of confounder : U = g(s) for a fixed, smooth (measurable) g(-) Variances are computed using the jackknife or Bayesian Bootstrap. S == 0 S == F
5. Conditioning on S doesn’t induce confounding: Y(w) L. W|U, S
(4 + 5) reduces the problem to unconfoundedness given location: Y;(w) 1. W |S Minimax Balancing References
This lets us identify the counterfactual mean E [Y (w)] = Es [E[Y|S, W = w]] Balancing methods (Hirschberg and Wager 2021) seek to sidestep estimating a
propensity score and instead directly fit an outcome surface and ‘debias’ it us-  [1] H.Druckenmiller andS. Hsiang. o - -
ing weights minimise worst-case regression error for a convex function class (eg ,g(c)ci%untmgfor unobservable heterogeneity in cross section using spatial first differences.
jueiiect=2, Nalveestimate =292 F {||V2N(X>H = B>} [2] B. Gilbert, A. Datta, J. A. Casey, and E. L. Ogburn.
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