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Introduction

Social scientists frequently attempt to study causal effects with geolocated data
Especially widespread in economic history, historical political economy

Assignment mechanism unknown, but loose intuition that closer units are more
comparable on unobservables – Tobler’s law

Current practice: assume geolocations are just another covariate, proceed with standard
unconfoundedness approaches
Or use spatial information to subset the data to ‘close enough to a border’, then fit outcome
models : ‘local’ unconfoundedness

this project: estimators that use geographic data to partial out effect of smooth
spatial confounder using ideas from semiparametric estimation for causal effects

Setup
Data:

Outcome: Yi(s) ∈ R
Treatment: Wi(s) ∈ {0, 1}
(Unobserved) Confounder: Ui(s) ∈ R

Each observation has spatial location si
point data: si ∈ R2 : latitude, longitude
areal data: Data located on an irregular lattice

Robinson: Partial Linear Regression Formulation

Xi = (1,Wi)
Since U is unobserved, ‘long’ regression is infeasible, but Si available
OVB: E [τ − τ̂ ] =

(
X⊤X

)−1 X⊤E [U |X]
To adjust for Si flexibly, a partially linearmodel is a reasonable starting point

Yi = τWi + µ(0)(Si) + εi

In a seminal article, Robinson(1988) rewrites the above regression as
(Yi − E [Yi|Si]) = τ · (Wi − E [Wi|Si]) + ηi ;E [η, Si,Wi] = 0

where E [Yi|Si] =: m(Si) and E [Wi|Si] =: e(Si) are nonparametric regressions
[‘nuisance’ components]

Identification

1. Consistency / SUTVA : Yi = Yi(wi).
2. Latent Unconfoundedness: Yi(w) ⊥⊥ W |U given unobserved confounder
3. Positivity : Pr (W = 1|U) ∈ (0, 1)

Treatment varies at a smaller scale than the spatial confounder

4. Learnability of confounder : U = g(s) for a fixed, smooth (measurable) g(·)
5. Conditioning on S doesn’t induce confounding: Y (w) ⊥⊥ W |U, S

(4 + 5) reduces the problem to unconfoundedness given location: Yi(w) ⊥⊥ W |S

This lets us identify the counterfactual mean E [Y (w)] = ES [E [Y |S,W = w]]

u y w

True Effect = 2 ,   Naive estimate = 2.698

Estimands

Estimands: τATE = E
[
Y 1 − Y 0

]
, τATT = E

[
Y 1 − Y 0|W = 1

]
, τ (x)CATE =

E
[
Y 1 − Y 0|X = x

]
Conditional-variance weighted average of strata-specific effects

τe =
E [{e(S)(1− e(S)} τ (S)]

E [e(S)(1− e(S)]

Estimators

Partially Linear Regression Coefficient is consistent for ATO

τ̂ =
n∑
i=1

(Yi − m̂(Si)) (Wi − ê(Si)) /
n∑
i=1

(Wi − ê(Si))
2

Augmented Inverse Propensity Weighting for ATE

τ̂ATEAIPW =
1

n

n∑
i=1


Regression︷ ︸︸ ︷
m̂1(Si) +

IPW of residuals︷ ︸︸ ︷
Di(Yi − m̂1(Si))

ê(Si)︸ ︷︷ ︸
estimator for E[Yi(1)]

− 1

n

n∑
i=1

[
m̂0(Si) +

(1−Di)(Yi − m̂0(Si))
1− ê(Si)

]
︸ ︷︷ ︸

estimator for E[Yi(0)]

Tobler : Estimating m̂, ê

Weighted sum representation regressionsm(s) = E [Y |s = s] as m̂(s) =
∑n

i=1 ωi(si)yi
NN Regression, Kernel Regression, Random Forests

Nearest Neighbours Differencing: Compute Ãi = WAi is the average of
neighbours’values of Ai, where W is a (queen) weight matrix

Estimate regression with residuals

(Yi − Ỹi) = τ (Wi − W̃i) +

=0 by smoothness︷ ︸︸ ︷
Ui − Ũi + ηi

With regular lattice data, Druckenmiller and Hsiang(2018) call this Spatial First differences
Markov Random Fields: Unit random effects γj are assumed to be GMRF andNj

denotes the set of neighbours of unit j.

J(γ) =
n∑
j=1

∑
i∈Nj,i>j

(γj − γi)
2

Variances are computed using the jackknife or Bayesian Bootstrap.

Minimax Balancing

Balancing methods (Hirschberg and Wager 2021) seek to sidestep estimating a
propensity score and instead directly fit an outcome surface and ‘debias’ it us-
ing weights minimise worst-case regression error for a convex function class (e.g.
F :

{∥∥∇2µ(x)
∥∥ ≤ B)

}
FH =

{
m : m(s, w) = µ(s) + wτ (s), ∥µ∥2H + ∥τ∥2H ≤ 1

}
γ̂ = argmin

γ∈Rn

sup
µ∈H

(
1

n

n∑
i=1

γiµ(si)
)
+ sup

τ∈H

(
1

n

n∑
i=1

(Wiγi − 1)τ (si)
)
+
σ2 ∥γ∥22
n2

ψ̂AML =
1

n

n∑
i=1

(τ̂ (si)− γ̂i(µ̂(si) +Wiτ̂ (si)− Yi))

Proxy Outcome and Treatment Design

UZ V

S

W Y

Bridge functions: ∃h(·) that satisfies
E [Y (w)− h(V, S, w)|U, S,W = w] = 0 for w ∈ {0, 1}

h is a transformation of the pre-treatment outcome so that the effect of the
unmeasured confounder on the transformation is the same as on the
unobserved counterfactual outcome

Then, counterfactual mean E [Y (w)] = E [h(V,w, S)]

h(·) identified by moment condition
E [Y − h(V,w, S;γ)|Z,W, S] = 0

where γ is a finite-dimensional vector that characterises h(·)
High-dimensional Generalised Method of Moments problem - need
to handle non-uniqueness using regularisation (Imbens et al 2021)

Simulation Study

Data on 40× 40 cell grid
U is a Gaussian Process with Matern covariance (stationary)

R(d; θ, ν) =
1

Γ(ν)2ν−1

(
2
√
νd

θ

)ν
Kν

(
2
√
νd

θ

)
K is a modified Bessel Fn
ν > 0 is a smoothness parameter, θ is a range parameter
d is Euclidian distance between two locations

Wi ∼ Bernoulli(logit(U + ηi))), ηi normal
Yi = τWi + U + εi

ν = 6
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ν = 0.5
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